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SUMMARY

Delamination Growth in Composites under Fatigue Loading
By
Rafiullah Khan

Fiber reinforced composites are attractive for aerospace applications due to high specific
strength and stiffness. Their use has been gradually increased to 50% by weight of the aircraft
over past decades. As a consequence, modern aircraft utilize composites in the primary
structures like wing skin and fuselage. The use of composites in primary structures has
increased the need for reliable strength assessment methodologies.

Composites are inherent to various damage types of which delamination is the most severe
type of damage. Delaminations may grow due to fatigue resulting in the stress redistribution
and potentially leading to structural failure, thus making fatigue an important design concern.

Damage tolerance of aircraft structures is a key aspect in maintenance and safety of aircraft.
For damage tolerant design of structures, the development of accurate delamination growth
assessment tools is necessary.

Delamination growth is affected by both cyclic and monotonic part of the fatigue load cycle.
The effect of monotonic part is known as stress ratio (ratio of minimum to maximum cyclic
stress) effect on delamination growth, and it has been extensively studied in the literature.
Chapter 2 provides a detailed review of the literature concerning the stress ratio effect on
delamination growth.

The literature review shows that previous studies empirically relate delamination growth to a
driving force parameter that seems not based on physical mechanisms. Studies are present
where mechanisms of delamination growth have been investigated; however there is a lack of
efforts to link these quantitatively to delamination growth models.

The objective of this thesis is the development of a mechanistic model for delamination
growth that is based on the observed delamination mechanisms and the effects of monotonic
and cyclic loadings in fatigue. The thesis is based on the hypothesis that both monotonic and
cyclic loading affect fracture surface formation, which can be used for delamination growth
characterization. The secondary objective of the thesis is the characterization of fracture
surfaces for the effect of monotonic and cyclic loading. To limit the scope, delamination
growth under mode I fatigue has been investigated in the thesis.

The approach of the thesis is experimental. Delamination growth is characterized
experimentally both on macroscopic and microscopic levels, as described in chapter 3.
Fatigue tests were performed on double cantilever beam (DCB) specimens to investigate
delamination growth behavior under different stress ratios. Specimens were made from cured
laminates of M30SC/DT120 carbon/epoxy prepregs. Crack closure during delamination



growth was investigated using a clip gauge extensometer. The effect of fiber bridging was
investigated by cutting bridging fibers during delamination growth experiments. Microscopy
of the fracture surfaces was performed using scanning electron microscopy. Width tapered
DCB (WTDCB) specimens were used for the delamination growth tests under fatigue with
constant monotonic and cyclic load during delamination extension.

Results of the fatigue tests and microscopy are presented in chapter 4. The delamination
growth rate has been related to the strain energy release rate (SERR). The SERR range has
been defined such that it resembles the correct analogous to the stress intensity factor (SIF)
range. For constant SERR range, the delamination growth rate is higher for higher stress
ratios. Crack closure was observed to occur for the lowest stress ratio applied in the tests.

Fractographic analysis of the fracture surfaces revealed broken fibers, loose fibers, hackles
and striations. The striations and hackles on the fracture surfaces of WTDCB specimens were
quantitatively analyzed for different combinations of monotonic load and cyclic load
amplitudes. It was observed that striation spacing increased with monotonic and cyclic load.
The hackle length increased with monotonic load, but decreased with the cyclic load
amplitude.

Crack closure and fiber bridging marginally explain the stress ratio effect on delamination
growth, as discussed in chapter 5. Crack closure increases the effective minimum load at
crack tip at the lower stress ratio only. This results in higher effective stress ratio at the crack
tip. In this case, the SERR range was corrected for crack closure. By plotting delamination
growth rate against corrected SERR range, the data shifted to the region with higher stress
ratios. To illustrate the effect of crack closure in 3D representation, delamination growth rate
was plotted against SERR range and maximum SERR. It was observed that the data corrected
for crack closure shifted to the higher stress ratio region, while remaining on the same crack
resistance surface.

It was further observed that fiber bridging decreases the delamination growth rate. The stress
ratio remains the same. It was observed that fiber bridging affects both minimum and
maximum loads during fatigue resulting in same stress ratio as without fiber bridging. In a 3D
representation of delamination growth rate versus SERR range and maximum SERR, the data
was observed to shift to the lower delamination growth rate region due to fiber bridging.

The experimental results showed that delamination growth is not a unique function of SERR
range, but also depend on the stress ratio. This implies that delamination growth depends on
both cyclic and monotonic loads. A two parameter model for delamination growth was
developed based on the observation of the effect of cyclic and monotonic load on the fracture
surfaces. Chapter 6 describes the mechanism of delamination growth and the development of
the mechanistic two parameter model for delamination growth prediction. The two parameter
components in the model are superimposed rather than multiplied in agreement with the
superposition of the effects of cyclic and monotonic loads observed with microscopic features
on the fracture surfaces. The two parameter model for delamination growth represents a crack
resistance surface for the material in the 3D coordinates of delamination growth rate versus
SERR range and maximum SERR.



The model has been implemented using data from the delamination growth experiments. The
surface fitting tool of the commercial software MATLAB was used to obtain the equation. To
validate the model, experimental data was taken from the literature. The predictions with the
model and the reported experimental observations were observed to be in good agreement.

The current model is different from previous models in that the relation between delamination
growth and correlating parameters is no longer a simple fit of the experimental data by
regression. The fit is rather an educated fit based on the observed contribution of monotonic
and cyclic load components on fracture mechanisms. The two parameters in the model are
superimposed to describe contribution of the load components. In previous two parameter
models the terms were multiplied without justification using the physics of delamination
growth.

The conclusions of the thesis are summarized in chapter 8. It can be concluded that the effect
of monotonic load on delamination growth is not fully explained by crack closure and fiber
bridging. The delamination growth should be characterized using both monotonic and cyclic
load components. These load components affects delamination growth at microscopic level
independent of one another. The two parameter terms in the model are added in conjunction
to the superposition of the effects of these parameters on microscopic features. It is
concluded that the model can be extended to the delamination growth in different modes of
fracture.
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