1: Manipulating sheet
1.1 SLUMPING

Glass
Gores Group Headquarters by Gores Group Headquarters by
Belzberg Architects Group, Bever|y
Hills, California, United States Hills, California, United States
Clay
1.2 thermoforming

Plastic
University of Arizona Solar
Decathlon House Washing Uecaation House, Washington DC,
United States Metal

Bioform by Murmur, Artist Space, New York, United States

1.3 EXPLOSIVE FORMING

Metal
The Grize Generaal by IAA Architecten, Eindho
Netherlands

1.4 bending plies

Education Pavilion at Lincoln Park Zoo by Studio Gang, Chicago,
Post-formable Plywood
Dragon Skin Pavilion by EDGE + LEAD, Hong Kong \& Shenzze Bi-City Biennale of Urbanism)
Architecture

5 Stamping
Metal
Forum Mitterlhein Koblenz by
Benthem Crouwel Architects, Benthem Crouwel Architect
Koblenz, Germany
1.6 HYDROFORming

Metal
LaLLX Assurances Headquarters by
Atelier d'Architecture Jim Clemes S.A., Leudelage, Luxembourg

1.7 SPINNING

Metal
Culture House Eemhuis by Neutelings Riedijik Architects
Amersfoort, The Netherland

2: Continuous shaping $\quad 9$
2.1 Extrusion

Spanish Expo-Pavilion by Franciso Mangado, Zaragoza, Spain Stiff Mud Yale University Health Services
Building by Mack Scogin Merril Building by Mack Scogin Mer Connecticut, United States
Metal
OMs Stage by 5468796 Architecture, Winnipeg, Canad
Auditorium by Selgas Cano Cartagena, Spain
2.2 PULTRUSION
ber-reinforced plastic (FRP) Sheraton Milan Malpensa Airport King Roselli Architetti, Milan, taly

```
3: Making thin or hollow }12
3.1 CONTACT MOLDING
    N
        North Carolina Museum of Art
        Carolina, United States
    Fiber-reinforced gypsum
```

2 bLADDER INFLATION
CONT-CT MOLDING
Fiber-reinforced plastic
Walbrook Office Building by Foster
and Partners, London, England
3.3 FLLAMENT WINDING
Fiber-reinforced plastic
ICD/ ITKE Research Pavilion,
ICD/ITKE Research
Stuttgart, Germany
. 4 Centrifugal casting
Concrete
Forum Eckenberg Academy by
Eker Architekten, Adelsheim,
5 blow molding
Glass
Hesiodo by Hierve Diseneria,
Hesiodo by Hierve D
Mexico City, Mexico
Pastic
Plastic
Pastic
EcoARK by Miniwiz, Taipei, Taiwan

4: Forming solid
4.1. CASTING CONCRETE
Using a foam mold

Using a foam mold
Using a thermoforme
Using a thermoformed plastic mold Using a wood mold
Crematorium He Crematorium Heimolen by Claus Belgium
Olympic Athletes Housing by Nial McLaugh lin Architects, Stratford. England
Using a fiberglass mold
3.1 Phillip Lim Store by Leong
Leong Architects, Seoul, South

Korea
Using a steel mold
33 Mackenzie Street by Elenberg Fraser, Melbourne, Austraiia
Casting concrete
Vacting compositit Gate Arcades by ACME,
Vione London, England
4.2 CASTING METAL

Using a sand mold
Paul Smith Store by
6a Architects, London, Englan
6a Architects, Londo
Using a plaster mold
Using a plaster mold
Using a ceramic mold
Using a ceramic ma
Using a steel mold
4.3 CASTING GLASS

Glass
Bahail 1 Temple of South America by Hariri Pontarini Architects, Chile
4.4 VIBRATION-PRESS CASTING Stiff Concrete MR 299 by HGR Architects wit
Ariel Roio, Mexico City, Mexico
4.5 VIBRATION-TAMPING

Mississippi Library Commission Headquarters by Duvall Decker Architects, Jackson, Mississippi, United States
. 6 PRESSING
Glass
Gerrit Reitveld Academy Addition by Benthem Crouwel Architects,
Clay
Rin
Ringling Museum Addition by Uachado Silvetti, Sarasota, Florida.
United States

Bibliography and Additional References	216
Glossary	218
Index	220
	224

4. Laurel Porcari, architectural art glass in The Beacon, a private dining room in
L.Auberge Casino and Hotel, Baton Rouge, Louisiana. Made with fused art glass,
sumpeed on a plaster mold and a custom stainess steel armatwe

5 Close-up of the glass

For manufacturing slumped clay, molds can be made from steel, bisque-fired clay, plaster, wood, wood products, o Styrofoam. For prototypes, almost any material can be used acluding draped canvas and wadded newspaper. For manufactur g slumped clay, steel is rarely used; although it is durable, it is th ost expensive mold material, and production runs for slumpin ay are often small. Generally, bisque-fired clay and plaster mold e the best for clay slumping, as those tooling materials absob water from the clay, thereby decreasing the drying time necessary oo stiffen the clay. This decreases the manufacturer's productio ime. Typically molds for glass slumping are more expensive than those of clay slumping, because they need to withstand the hig emperatures of the glass kiln.

The molds for slumping are open and may be partial or full. A partial mold does not fully support the slumping medium during the manufacturing process. Instead, the medium is llowed to deform under gravity into a natural catenary curve. Partial molds depend on a combination of time, self-weight, and material viscosity to determine the depth of the drape. Partial molds work better with glass than clay, because glass will behave onsistently at particular temperatures. For example, curved car windshields can be slumped using a partial ring mold, which only supports the glass along its edges. Within these parameters he glass can be slumped to particular curves at a high tolerance.

7 Slumped glass pieces and their molds

Glass slumping is best done in a partial mold when an architect desires visual clarity, as both sides are exposed to heat, giving the glass a flame polish.

In a full mold, the slumping medium deforms until it is in complete contact with the mold's surface. The mold's surface will directly transfer to the face of the slumped medium; therefore care must be taken to properly prepare the mold surface. Full molds can be symmetrical or asymmetrical and either male or female. [11] If the full mold is a female mold, then ventilation holes must be added to avoid trapping air as the slumping medium fills the mold. [12] Slumping molds can be fairly intricate; however, the more intricate the mold the more difficult it is to slump the material. If the mold is too intricate, it can place stress on the medium as the medium shrinks, resulting in cracks. To avoid cracking, intricate molds should incorporate expansion joints, or be made from a flexible medium such as sand. [13]

Steel ring or partial molds are often fabricated by hand, but full, more complex tooling may be machined by CNC millers or spark or wire EDMs. Molds such as clay, plaster, or concrete are most often cast against hand-made or CNC-milled molds, but can also be made directly by CNC milling, or by hand pressing or other build-up methods. Wood molds can be fabricated by hand or CNC mills, and foam molds can be made by hand, CNC mill, or CNC hot-wire cutting.

SLUMPING: GLASS

EXTERIOR GLASS PANELS
GORES GROUP HEADQUARTERS
Belzberg Architects
Los Angeles, California

Belzberg Architects was commissioned to design and to product construction documents for the renovation, addition, and new exterior skin of an existing 1960s Los Angeles office building. The project's original client was a law firm; however, the Gores Group bought the building after the building permit had been obtained and construction begun. In the interest of continuing to work on the project, Belzberg Architects contacted Alec Gores-founder, chairman, and chief executive officer of the Gores Group-to show him designs and mock-ups for the exterior glazing system. The new owner required some changes, but most of the original design of the building's exterior remained. The addition is a separate volume from the original building, and a bridge

MATERIAL CONSIDERATIONS + DESIGN PARAMETERS

Bent plywood is a composite material one in which the adhesive veneers work together The specific adhesive used depends one the and strength, tightness of curve, exposure to moisture, and desired cycle times If manufactured by a craftsperson, white or yellow wood glues may be used; however, cycle times are long and creep may be an issue for tight curves. For components that are exposed to moisture or have tight curves, urea formaldehyde glue is best, though difficult to work with. Most contract manufacturers will use synthetic resins that are activated by heat-induction or radio waves, and pressure. Generally, heat-induction has a longer cycle time than radio frequency, but is better suited for complex parts as it is more precise and results in less distortion. After the blank is removed from the press it cools, and the adhesive continues to cure.

This chapter focuses on two different ply media-wood sheets and post-formable plywood. Wood sheets include individual sheets of wood veneers, thin plywood sheets, or bendy plywoods (e.g. Wacky Woods). With these, the wood sheets are laminated together with a wet adhesive, and are placed in the press until the adhesive cures. Post-formable plywood is a proprietary plywood that uses temperature change to loosen and set the adhesive between the layers of wood.

wood sheets

Typical wood veneers for bending plywood are Douglas fir, maple, or birch, but they can include any wood species, bendable plywood (less than $0.12 \mathrm{in} / 3 \mathrm{~mm}$ thick), or bendy plywood. If the design allows, most manufacturers will use inexpensive woods (e.g. fir or birch) or plywoods for the inner plies, while reserving the more expensive or decorative wood veneers (e.g. quartersawn mahagony or lacewood) for the face veneers. The inner layers can be in any thickness, as long as they can form the desired curve. The face veneers should be sanded prior to pressing, reducing the need for post-production sanding,

W be
Wood and allowable spring and, soften them for a little more flexibility If the desired curve is too great or the wood sheets too thick, the sheets may require additional moisture for added flexibility, from steam or water soaks. This should be avoided, though becase added misture can the cause delamination with some because added nos yellow wood glue. In layups with wood glue,
In layups with wood veneers, the grain direction of the wood plies parallel, then the bent plywood is called a lamination. It will act in a similar paray to solid wood, expanding and contracting along the grain width with changes in moisture. If the plies' grains are perpendicular, the bent plywood is called veneering. In veneering, the changing grain direction of the plies provides stability in changing moisture conditions.

URVE RAD

The minimum curve radius for contract (anufacturers using a hydraulic press is 2 in
50 mm . The curve radius depends on the thickness of the veneers, the applied pressure, the moisture content of the wood, and
the adhesive used. If made by a crats ars he adhesive used. If made by a crantspers
nh a workshoo, you should expect a 4in 100 mm) mininum radius.

RAFT ANGLES

Ithe bent plywood is flexible enough, draft angles are not required. If the bent ywood will be stiff, a draft angle of $3-5^{\circ}$ commended

RAW DEPTH

There is no limit to the draw depth to thi rocess, as the plies can be placed as

NIS

he finish of the material depends on the inish of the face veneers rather than the
mold surface. High-quality finishes should be done post-production.

NSERTS

astener inserts may be added between he plywood layers for the final component he plywood layers for the final component
assemblies. Plies should be cut to hide nsert flanges as necessary
$\xlongequal{\overline{0}}$

oints

Jints between wood plies within the layup must be offset from joints in the preceding nd following layers. This will eliminate any and toriow ing layers. This wiline

RODUCTION RUNS

Poduction run lengths will depend on the cooing media, the equipment, and the manufacturing faciility. Workshops can of 2-50 units, with 2-25 being typical, using molds made from foam, cardboard, or Plywood. Contract manufacturers can
produce prototypes and production runs of up to 2,000 units. up to 2,000 units.

RODUCTION SPEED

Cycle times can be long. If manutactured in workshops, the time in the press may rang from 4-12 hours, depending on the size
of the piece, the number of plies, and the adhesive used. In contract manufacturing echnologies such as heat-induction or
radio waves are used to speed up the adh sive curing; cycle times are typically under 20 minutes per layup. Post-production
CNC trimming may take an additional 3 CNC trimming may take an additional $3-10$ inutes per piece depending on the cutting

hrinking

Unless moisture is added to the plies prior this process.

IZE Limits

There are almost no size limits when bend-
ing plywood. Boats, airplanes, and furniture hi plywood. Boats, airplanes, and furnitur molding plywood. The component size will be linited by handling and the available equipment, such as the size limits of the

SPRINGBACK

Springback is normal in bending plywood, as the layers try to straighten against the curve. Springback of 0.06-0.12in (1.5-3mm depend on the thickness of the laminate, the ype of plies, the amount of curve, and the type of glue. For example, yellow wood glue ue. Generally, the thinner the laminate and the more plies, the less springbac To counter springback, manufacturers will bend the plywood slightly tighter than esired, so that with springback the con

tolerances

Shape and curvature tolerances may be difficult to predict as a result of springback tolerances are an issue, prototypes should be made to predict the springback,
or thinner veneers can be used. With CNO post-production trimming, tight dimension
tolerances can be maintained.

OOL COMPLEXITY

Tools are simple, almost rudimentary. Too can be fabricated by CNO
wire cutters, or by hand.

TOOLING COSTS

Tooling costs for this process are quite low. suitabele for midd-volume production runs can range from $\$ 1,000-5,000$.

undercuts

ypically when manufacturing, undercuts full mold from closing are a vacuum bag from applying ample pressure. For making is permissible.

VENTS
Vents are not required as the press moves slowly and air
of the mold.

WALL THICKNESS

Wall thicknesses typically vary from 0.12-lin (3-25mm). Typically, the wall thicknes
needs to be consistent for the entire component. If not, then the layers of wood
sheets and adhesive will be visible and will sheets and adheswe io mee wisle and
negatively affect the component's finish face. If the layers are custom cut, then they can be cut into a tapered angle. This
creates a ayuo with a varying thickess. creates a layup with a varying thickness. This technique is much more expensive,
and likely will only be done by highly skille crattspeople.

KRERER

BENDING PLIES: POST-FORMABLE PLYWOOD
STRUCTURAL SKIN | DRAGON SKIN PAVILION
Emmi Keskisarja and Pekka Tynkkynen (EDGE), and Kristof Crolla Emmi Keskisarja and Pekka Tynk
and Sebastien Delarange (LEAD)
and Sebastien Delarange (LEAD)
Shenzhen Paviion, Hong Kong, and Bi-City Biennale of Urbanism/
Architecture, Shenzhen

The Dragon Skin Pavilion was a temporary pavilion made for the 2012 Hong Kong and Shenzhen Bi-City Biennale of Urbanism/Architecture, and was located in the Shenzhen Pavilion of the Biennale. [32, 42] The Biennale occurs every two years, and architects apply to have projects accepted. It features architecture and art installations, and other exhibitors for the 2012 Biennale included Office for Metropolitan Architecture (OMA), Steven Holl, MVRDV, and Reiser + Umemoto. The pavilion's design was the result of a collaboration between Laboratory for Explorative Architecture \& Design (LEAD), a young Hong Kong- and Antwerp-based architectural design and research practice founded by Belgian architect Kristof Crolla; and EDGE Research Lab at Tampere University of Technology (TUT). Founded in 2005, EDGE's goal is "to develop and dispose of funding for new research projects" for TUT.
The collaboration between LEAD and EDGE was initiated by Emmi Keskisaria, a PhD candidate at TUT. Keskisarja was researching potential intersections between digital design, digital fabrication, and the Finnish wood industry. As part of her work, Keskisarja invited Crolla to lead an eight-day architectural design workshop at TUT, titled Material Design and Digital Fabrication. In this workshop students worked with Grada and parametric modeling software to design a structure from post-formable plywood.

32
Dragon Skin Pavilion by Emmi Keskisaria
and Pekka Tynkynnen (EDGE), and
Kristof Crolla and Sebastien Delarang

of the Hong Kong and Shenzhen Bi-City
Biennal o f Urbanismarahtetur. An
exterior view of the Dracon Skin Pavilion

42
Panels interlock with one another
through solted connections
chererincrintinimin

[^0]

Corner radil

Corner radii are not required.

FINISH
The surface formed by the die is smooth,
with long mill lines running the length of the with long mill lines running the length of the
component. Post-production finishing can component. Post-production finishing can
be done to achieve satin, grit, or polished surfaces.

hollow
Most extruded aluminum components are hollow, as material costs are high; how
solid components can be extruded.

Joining

Units cannot be joined during the extrusion
st-production, and is often mechanic as aluminum is difificult to weld.

SHAPES
Extruded shapes have the same profile along their length. Extruded aluminum ca be simple or complex, as the material can ick up fine details.

SIZE LIMITS

Extruded aluminum components are limited
to $30 \mathrm{in}(120 \mathrm{~mm})$ in diameter

SURFACE DESIGNS

This process accommodates fine textures This process accommodates fine textu component. It does not accommodate in-line patterss or textures.

SYMMETRY

Generally, symmetrical shapes are easier Generally, symmetrical shapes are easier
to extrude. Asymmetric shapes will affect the consistency of metal flow through th
die. This can cause cracks and rips in die. This can cause cracks and risp in
the extruded component. The die can designed to make the flow more consistent, which will increase costs.

TOOLING COSTS

Tooling costs are moderate, due to the amount of steel necessary to resist the pressures of extrusion. Aluminum-extruding
dies often start at $\$ 10,000$, and the cost increases with complexity.

tolerances

Profiles are commonly held to 0.0 in- 0.02 in . $25-0.5 \mathrm{~mm}$), but tighter tolerances are to maintain than extruded tolerances, and can be $0.2 \mathrm{Zin}(5 \mathrm{~mm})$

WALL THICKNESS

is best to design profiles with a consistent wall thickness, or transitions between
one thickness and another Profies with one thickness and another. Profiles wit
an inconsistent wall thickness can be an inconsistent wall thickness can be
extruded, but there is increased difificulty in machine operation and die desifign. Meta flows slower throught thicker-wall areas than
thinner-wall areas, causing cracks and rips hinner-wall areas, causing cracks and rips
in the extruded component. This can be partially fixed by the tie's.' design, but this will increase costs.
Minimum wall thicknesses can range from
$0.04-0.2$ in $(1-5 m m)$, depending on the size of the component, the crosss-sectional area and the particular aluminum alloy.

METAL (ALUMINUM)

CURTAIN | OMS STAGE

5468796 Architectur
${ }^{53}$ MS Stage by 5468796 Architecture in Winnie
Canada, at night

Serial view of oms Stage
and Old Market S Suuare Aerial view of oMS Stage
and Olid Market Square

The city of Winnipeg held an open competition to design a bandshell for Old Market Square (OMS) in Winnipeg's Historic Exchange District. [53] The new structure was to replace an original bandshell, which was used only ifteen times per year. According to the architect's website, the design of the OMS Stage was a response to the traditional bandshell that looks forlorn throughout Canadian long winters. 546876 Architecure's winning submisn the second level, a pavilion a proection screen and a beacon, allowing it be used year round. The building is a $28 \mathrm{ft}(8.5 \mathrm{~m})$ cube. The private stage is ccessed from an internl concres is on to building is unconditioned, but fully wired with sound lights and interior projection.
5468796 designed the OMS Stage to be draped with a flexible curtain, ade from custom-manufactured aluminum extrusions. Similar to chain

POLLI-BRICK | ECOARK
Miniwiz
Taipei, Taiwan

The EcoARK is a large pavilion that hosted fashion shows and provide exhibition space for the 2010 Taipei International Flora Exposition, which ran from November 2010 to April 2011. Designed by Miniwiz, the EcoARK has $21,500 \mathrm{ft}^{2}\left(2,000 \mathrm{~m}^{2}\right)$ of floor area and is nine stories tall. [44, 45] It was
engineered to withstand earthquakes and typhoons, common to Taipei. In engineered to withstand earthquakes and typhoons, common to Taipei. In
keeping with the inherent nature theme of the exposition, Miniwiz designed keeping with the inherent nature theme of the exposition, Miniwiz designed the building to be as environmental and sustai inable as possible. The building is cooled without air-conditioning and is carbon neutral.

Miniwiz designed the EcoARK's exterior wall with a custom plastic blow-molded bottle that interlocks with one another. [46, 47] The bottles are
filled with air, for insulation, but can also be filled with water or sand for filled with air, for insulation, but can also be filed with water or sand for thermal mass. The building is about half the weigh of a conventional buired.
ing, which in turn reduces the amount of structure and foundations required. According to a Wall Street Journal article about the EcoARK, the building is the least costly of its size ever made. Building construction cost $\$ 250 / \mathrm{m}^{2}$.

Far Eastern Group, one of the largest plastic producers in Taiwa

| Far Eastern Group, one of the largest plastic producers in aiwan, |
| :--- | commissioned the Ecoark and donated it to the city. Douglas Hsu, group chairman of thate could be upcycled. The EcoARKs bottles are made from recycled polyethylene terephthalate polymer (PET) bottles. PET is the plastic typically found in disposable soft drink, water, and juice bottles. Taiwan has a high recycling rate, with 90,000 tons (more than 8 million kilograms) of plastic being recycled every year, so it seemed appropriate for Miniwiz to use this material in its design. In the end, the EcoARK upcycled 1.5 million PET bottles into 480,000 new, plastic blow-molded bottles. [48]

Unlike other case studies in this book, the custom manufactured components were not limited to just the EcoARK. Miniwiz has since developed its blow-molded bottles into a commercially available building product, named the POLLI-Brick. According to the British Broadcasting Corporation (BBC), Miniwiz has gotten requests to use the POLLI-Brick for gymnasiums, military bunkers, and other portable applications. Filled with air, the POLLI-Brick performs almost the same as a triple-layered, vacuumed glass unit, but at a sixth of the cost. It can withstand $681 \mathrm{~b} / \mathrm{f}^{2}(3,255 \mathrm{~Pa}$ a of lateral wind force with a fifth of the material weight. Currently, POLLI-Brick comes in translucent, semi-translucent, and white, but custom colors can be manufactured. POLLI-Bricks are available in three different sizes: $6,000 \mathrm{ml}, 690 \mathrm{ml}$, and $400 \mathrm{ml}(203 \mathrm{f} \mathrm{oz}, 23.3 \mathrm{floz}$, and
13.5 f oz), with varying heights of $12 \mathrm{in}, 7 \mathrm{in}$, and $4.6 \mathrm{in}(30.8 \mathrm{~cm}, 18 \mathrm{~cm}$, and $13.5 \mathrm{f} \mathrm{oz})$, with varying heights of $12 \mathrm{in}, 7 \mathrm{in}$, and $4.6 \mathrm{in}(30.8 \mathrm{~cm}, 18 \mathrm{~cm}$, and
$11.8 \mathrm{~cm})$ respectively. The largest size of POLLI-Brick can be used for interior 11.8 cm) respectively. The largest rior applications. POLLI-Bricks are self-extinguishing, fire retardant, an rior applications. POLLI-Bricks are self-extinguishing, fire retardant, and
flame retardant, and they meet standards set by ASTM, AAMA, and UL.

44
44
Eocark by Miniwizin Taipei, Taiwan.
Aerial view. This building has overt

${ }_{4}^{45}$ Cormer de
Corner detail of building
$\underset{\substack{\text { EcoARK night view, with LEDS inside } \\ \text { some of the PoLlul-bicks }}}{51}$

5
居
II

[^0]: 35 Cutting figures for CNC milling. All 163 panels and their joint locations

